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The relations between quantum probabilities, Kolmogorov probabilities, and 
informational probabilities are studied against the background offered by the 
concept of a quantum mechanical probability tree built in previous work. It is 
shown that the quantum mechanical transformation theory goes beyond the 
Kolmogorov concept of probabilities. It is furthermore shown that the quantum 
mechanical concept of probability is of the same essence as the informational 
one. The analyses that produce these conclusions bring forth the first lines of a 
general mathematical representation of the emergence and circulation of pat- 
terns of any kind. 

1. INTRODUCTION 

Many authors, starting with Mackey (1963), have perceived that the 
quantum mechanical concept of probability has specifics that distinguish 
it from the Kolmogorovian one. In particular, detailed mathematical 
characterizations of such specifics have been given in recent work by Accardi 
(1983), Gudder and Zanghi (1984), Pitowski (1989), and Beltrametti and 
Maczynski (1991). In what follows I give another sort of characterization, 
basically semantic, where, starting from the quantum mechanical transfor- 
mation theory, quantum probabilities are compared to both Kolmogorov 
probabilities and the theory of information. 

In previous work (Mugur-Sch/ichter, 1991, 1992a,b, 1993) I have 
studied the space-time organization of quantum probabilities. I have shown 
that this organization brings in centrally a certain type of treelike structure 
that I have called the "probability tree of a state preparation." Here, after 
a brief introduction to this new concept, I first show that it permits one to 
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grasp intuitively the essential conceptual difference between Kolmogorov 
probabilities and quantum probabilities and to specify a formal signature 
of these. Then I show that the quantum mechanical probability trees can be 
imbedded in the theory of information, where one can construct an 
informational representation of the quantum mechanical transformation 
theory that renders this theory intelligible, both physically and conceptu- 
ally, Thereby there will appear the first lines of a new formalism where the 
probabilistic, the quantum mechanical, and the informational representa- 
tions combine. 

In domains where formalisms have been strongly developed and play 
a crucial role it is not easy to draw attention to traits that go beyond the 
formalism, that have to be seized with its help, but traversing it to reach 
beneath. In order to free from any parasite the conceptual contours that we 
want to convey, we shall stick to most current mathematical expressions, 
such as can be found in textbooks. 

The key concept in this work is that o f  a random phenomenon. 

Before Kolmogorov's approach, the formalized features of the theory 
of probabilities concerned quasi-exclusively the probability measures. The 
involved events (elementary or not) were left in the substratum of the 
formalization and in general were not even symbolized. Kolmogorov has 
drawn them into the realm of the systematically symbolized and he has 
explicitly tied them to mathematical expression. In his approach any 
probability measure g is defined only inside a probability space [U, z, ~r], 
where U = {ei } (i ~ L I an index set) is a universe of elementary events ei, 
z is an algebra of events defined on U and z~ is a probability measure posed 
on z. Thereby it became obvious that a probability measure separated from 
a definite universe U of elementary events and a definite algebra r of events 
on U is not a definite concept, that it is a fragment of a concept. This has 
been an enormous progress. However, the process of making explicit the 
whole concept of probability is not yet exhausted. In Kolmogorov's 
approach any universe of elementary events U is conceived to be produced 
by some "random phenomenon," but this notion is neither explicitly 
defined nor systematically symbolized. So the way in which the operations 
and processes from the random phenomenon produce the elementary 
events ei ~ U remains vague. The structure of the channels through which 
semantic substance is drawn out from the pool of "physical reality" and is 
poured into the considered probability space is not yet specified, while on 
the other hand, though hidden, it plays a crucial role in the conceptualiza- 
tion. This entails, concerning the generated events and probability mea- 
sures, very puzzling ambiguities. These motivated the a posteriori 
mathematical and logical characterizations of structures of probability 
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measures and events quoted before (Accardi, 1983; Gudder and Zanghi, 
1984; Pitowski, 1989; Beltrametti and Maczynski, 1991). Such ambiguities, 
however, can also be attacked from an a priori viewpoint, genetically, from 
beneath, by the physical study of the random phenomena. It can be hoped 
that the results obtained along these opposed directions will merge into a 
more complete and controlled view. 

To begin with, in what follows the random phenomenon that produces 
the universe of elementary events from a considered probability space, 
quite systematically, will be explicitly symbolized. We shall indicate it by a 
pair (P, U), where P designates an "identically" reproducible procedure, 
each one realization of which brings forth one elementary event ei ~ U, in 
general variable from one realization of P to another one, notwithstanding 
the supposed identity of the reiterations, whereby, randomly, there emerges 
the whole universe U. Furthermore, in order to emphasize that each 
probabifity space is necessarily tied to some random phenomenon, we 
introduce the concept of a "probability chain'" where the considered 
probability space is always preceded by the symbol of the corresponding 
random phenomenon: 

(P, U) ~ [U, z, ~z] (1) 

One probability chain is the minimal autonomous and closed abstract 
probabilistic concept. The probability chains (1) are indivisible abstract 
molds. A probability space without a definite corresponding random 
phenomenon still is not a definite concept, it still is only a fragment of a 
concept, just like a probability measure without a definite universe of 
elementary events and a definite algebra of events on this. 

But mere systematic symbolization of the random phenomenon is not 
sufficient, of  course. The structure of what is indicated by the symbol 
(P, U) has to be specified also. In another work, within a "general syntax 
of relativized conceptualization," we have done this in quite general terms 
(Mugur-Schiichter, 1991, pp. 277-286) and have drawn interesting conse- 
quences. Here, however, for simplicity, we adopt a less general approach, 
concerning specifically the quantum mechanical random phenomena. This 
will suffice for indicating the essence of the texture that relates Kotmogorov 
probabilities, quantum probabilities, and informational probabilities. Im- 
mersion into the general syntax of relativized conceptualization and a 
detailed logical and mathematical representation of the obtained structures 
will be attempted elsewhere. 
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2. THE QUANTUM MECHANICAL PROBABILITY TREES 

2.1. The Essence of the Hilbert-Dirae Formulation of Quantum Mechanics 

Quantum mechanics studies states of microsystems. These are repre- 
sented by normalized kets t$) that are postulated to form a (Hilbert) 
vector space. From a physical point of view this formal postulate consti- 
tutes "the principle of superposition': If there "exist" two states with state 
vectors [~kl) and [~b2), then there also "exists" any state with state vector 
k//12) = 2111//1)'~/~2[~//2), where 21,22 are arbitrary complex numbers. 

The predictive qualifications of the states are probabilistic. Formally, 
they are obtained with the help of linear and in general noncommtlting 
dynamical operators fl (quantum mechanical observables). The language 
and the algorithms are as follows. It is asked, for instance, what (density of) 
probability n(~k, ~0j) there is, if a measurement of the physical quantity 
represented mathematically by the observable fl is performed on the state 
with state vector (ket) t~b), to obtain a physical outcome Vj corresponding 
to the eigenvalue ogj of fl. The answer is founded on the principle of spectral 
decomposability (the expansion postulate): on the basis of this principle one 
performs the spectral decomposition of kk) with respect to f~, [ r  
~.c(~b, ogj)[uj), where [uj) and ogj are, respectively, the eigenvectors and 
the eigenvalues of l), determined by the equation flluj ) = coj [uj), j~J,  J an 
index set, and c(~b, ogj) = (uj [~k) are the expansion coefficients. The sought 
probability is postulated to be g(~b, c0j)= t<uJlg,>l (contrary to certain 
beliefs, this cannot be entirely derived). 

Two distinct predictive probability measures corresponding to two 
noncommuting observables f~ and ~2 but to the same state vector [~b ) are 
related according to the quantum mechanical transformation theory, i.e., 
according to the equations c(~k, o~2~) -- ~ -  c~jc(~k, colj ), jEJ ,  n ~ N  (J, N are 
index sets for the eigenvalues of, respectively, ~ and ~2; c~,/= (v,~luj) are 
the transformation coefficients from the eigenvectors [uj) of f~ to those 
Iv. ) of a2). 

When the probability postulate ~(r162 2 is combined 
with the transformation formula c(g,, a~:.) = ~ ~%c(r olj) (as is done, in 
particular, within the representations of "successive measurements"), the 
transformed expression acquires the form 

= E [g.J [21c(r ' o91~ ) [2 + ["interference" terms] (2) 
J 

where the "interference" terms contain products c*(r colj)c(r o92~) or 
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c(~, oJu)c*(~b, o~z~): In the probability ~(~, c92.) = [c(r ~02.)12 of an eigen- 
value of the observable f~2 written as a function of  the expansion coefficients 
corresponding to the observable f]l, there appear terms involving the 
probabilities n0P, cou) = Ic(~ b, ogu)] 2 of the eigenvalues of the observable Q1 
and furthermore other terms. A probability rr(~p, co2~ ) is not just a linear 
superposition of the probabilities rr(~k, c0u). In this sense, there exists an 
"interference of probabilities" tied to a change of  representation performed 
according to the transformation theory. 

When the probability postulate ~(~, %0 = ]c(~b, oy)[2 is combined with 
expressions of the type [~k12) = )~ 1~'1 ) + 221~2) entailed by the principle of 
superposition, the probability 1c(~k12, ogj)l 2 of an eigenvalue of the observ- 
able f2 acquires the expression 

 oj)l I,hc(r  oj) +  oj)l 
= o j)l = + 1 2c( 2,  oj)l = + ["interference" terms] (3) 

So again the probability n(~'12, ogj) is not just a linear superposition of the 
probabilities n(ff~, wj) and rc(~k2, wj); there appear "interference" terms 
involving this time products c(~1, ~oj)c*(~k2, ogj) or c*(~q, ~0j)c(~,2, ~s)" In 
this sense there exists also an "interference of probabilities" tied to the 
principle o f  superposition. 

There are obvious formal similarities between these two sorts, (2) and 
(3), of "interference of probabilities." But there are also obvious formal 
differences (Mugur-Sch~chter, I99I, pp. 1414-1415). The existence of the 
latter is quite generally neglected. Afor t ior i  no questions are raised 
concerning their semantic substratum. And, on the sole basis of the formal 
similarities, in both cases the situation is indicated in a flattening way by 
the same expression, "interference of probabilities.'" The interference of 
probabilities is the most striking specific of quantum theory as compared 
with the other probabilistic physical theories. 

So vectors, operators, equations, and probability measures are ma- 
nipulated accordingly to algorithms. Hidden beneath these algorithms, the 
probabilistic organization of the quantum theory remains obscure. What 
are the correspondences between, on the one hand, the basic quantum 
mechanical descriptors--state vectors [~b), operators fL eigenfunctions 
and eigenvectors of these--and, on the other hand, the basic probabil- 
istic descriptors, random phenomena and probability spaces? In the ab- 
sence of clear answers the involved significances cannot be perceived. The 
physical meaning of the two principles that dominate the formalism--the 
principle of superposition and the principle of spectral decomposition--as 
well as the semantic content of the interferences of probabilities, remain 
vague. 



58 Mugur-Schiichter 

We have shown (Mugur-Sch/ichter, 1991, 1992a) that the correspon- 
dences between quantum mechanical and probabilistic descriptors can be 
established, and that indeed they enlighten the semantics encapsulated in 
the quantum mechanical formalism. The summary of these results is as 
follows. 

2.2. Formal Quantum Mechanical Probability Chains 

Consider a pair (l~b >, ~), where [~k> is the state vector assigned at the 
time t to the considered microsystem S and f~ is a Hermitian operator 
representing a quantum mechanical dynamical observable. For each such 
pair the quantum theory defines a family of elementary probability densi- 
ties n(~k, ogj)=l<ujl~>12,j~J (J an index set) for the emergence of an 
eigenvalue ~oj of the observable f~ when a measurement of f~ is performed 
on S in the state [~b >. These generate a definite probability for any event 
constructed from elementary events coj. So one can define for any pair 
(kb>,f~) a formal "probability chain," i.e., a sequence (random phe- 
nomenon) ~ [a probability space] that can be symbolized by 

fig,, ~), {o,j }] ~ , ~  [ {coj }, ~, ~(r t~)] ( 13 

where [(~, f~), {ogj}] is the symbol for the random phenomenon that 
involves the state vector [~k > and the dynamical observable f~ and produces, 
by reiteration, the universe {092 } of formal elementary events: ~ is the total 
algebra on {toj }; and n(O, fl) is the probability density law on �9 determined, 
via the law of total probabilities, by the elementary probability density law 

o,,) = I<u, I ,>l =. The set of all the formal chains (1') with total algebras 
inside them includes the expressions of all the conceivable quantum 
mechanical predictions. 

2.3. Factual Quantum Mechanical Probability Chains 

Each formal probability chain (1') points toward a corresponding 
factual probability chain 

M.), { V.j }1 [{ Voj }, p(e , Mo)] (1") 
where Pg, is the operation of state preparation that produces the state with 
state vector [~k >; Mo is an individual measurement evolution corresponding 
to the observable f~; Voj is a "needle position" of a macroscopic device Dn 
for measurements of the observable f~; [(P~,, Mn), {Voj}] is the random 
phenomenon that involves the operation P~, of state preparation and the 
individual measurement evolutions M o and which, by reiteration, produces 
the universe of elementary events { Vnj }; zr is the total algebra on { Vaj } (F: 
factual); and p(P~,, Mn) is the probability measure on ZF. 
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2.4. The Factual Quantum Mechanical Random Phenomena 

So: 

�9 A quantum mechanical random phenomenon consists of a sequence of 
two distinct operations, an operation P~ of state preparation and a 
measurement operation Mn that ends with the registration of a "needle 
position" Vnj. 

This is a complex structure of which the characteristics and their conse- 
quences will progressively appear in what follows. 

2.5. Connection between Formal and Factual Chains 

The probability chains (1') and (1") are connected as follows. Each 
eigenvalue coje{coj.} from a formal chain is posited to be calculable as a 
function c0j =fn(Vnj) of that observed "needle position" V~j from the 
factual chain that is labeled by the same index j ~J. Furthermore, each 
factual elementary probability density p(P,, Mn, Vaj) from p(P~, Mu) is 
posited to generate--via coj =fn(Vnj) - - the  corresponding formal elemen- 
tary probability density n(~b, t ,  c0j) contained in n(@, fl): " 

p(P,,  Mn, Vaj) =~ n(~/, f~, coj) = [(ujl$)l 2 

This--and only this--designates the family of assertions that quantum 
mechanics offers for experimental testing (Mugur-Schiichter, 1992b). 

2.6. Elementary Quantum Mechanical Chain Experiments 

A sequence P~-Mn-Vnj from a quantum mechanical random phe- 
nomenon that generates a factual chain (1") will be called an "elementary 
quantum mechanical chain experiment" (eqmce). It possesses a remarkable 
unobservable operational-processual depth wherefrom there emerges into 
the observable only the extremity Vnj that contributes to the construction 
of the factual observable universe of elementary events { Vnj } from a chain 
(1"). Each observable quantum mechanical "event" (nonelementary) from 
an algebra ZF from a factual quantum mechanical probability space con- 
tains inside its semantic substratum all the unobservable sequences of 
operations and processes forming the corresponding elementary quantum 
mechanical chain experiments that end up with the registrations Vnj of a 
needle position contained in that event. So any quantum mechanical 
prediction concerns either only one elementary quantum mechanical chain 
experiment or a whole union of such experiments. 

�9 The elementary quantum mechanical chain experiments from a quan- 
tum mechanical random phenomenon are the "'fibers" out of which is 
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made the factual substance of  the quantum theory. They generate 
directly the basic, the individual level of  the quantum mechanical 
probabilistic conceptualization, reflected in the universe {Vnj } of  
elementary events. 

Therefrom are then successively built the other two--abstract--metalevels 
of conceptualization, the statistical metalevel, reflected in the algebra zF of 
events, and the probabilistic meta-metalevel, reflected in the probability 
measure p(Pc', Mn). 

The individual fibers PC'-Mn-Vnj specify completely the structure of 
the physical-operational channels by which semantic substance, drawn 
from the pool of what is called physical reality, is transformed and poured 
into the factual quantum mechanical probability spaces. So also into the 
formal ones, via the two connective relations 

ogj =fn(Vnj), ,oj) = i<ujl >[ = = n o ,  vo j )  

Nonetheless, and this is a striking fact: 

�9 Within the formalism of  quantum mechanics the individual, elemen- 
tary quantum mechanical chain experiments are devoid of any repre- 
sentation. 

Correlatively, the formalism does not distinguish clearly between the three 
different levels of conceptualization that are involved, the individual level, 
the statistical level, and the probabilistic level. This introduces much 
confusion, especially in the logical approaches (Mugur-Sch/ichter, 1992b). 

2.7. The Quantum Mechanical Probability Trees 

We f ix  now an operation of state preparation PC'. Consider the set of 
all the factual probability chains (1") determined by PC" and the set of all the 
physical processes Mn of measurement evolution corresponding to all the 
dynamical observables fl~, f~2, f~3 . . . .  defined in quantum mechanics. The 
probability chains from this set constitute together a certain whole, a 
certain unity, in consequence of their common provenance Pg,. 

What is the space-time structure of this unity? 
This can be regarded as the central question of the present inquiry into 

quantum probabilities. 
For all the chains from the considered unity, the space-time support of 

the operation of state preparation Pc, is by definition the same. But not also 
for all the individual measurement evolutions Mn involved in this unity. 
The set of the individual measurement evolutions splits into classes 
Mx, Mr  . . . . .  each class of measurement evolutions corresponding to a set 
{f2hx, h --- 1, 2 . . . . .  m}, {f~hr, h = 1, 2 . . . . .  k} . . . . .  of m, k . . . . .  mutually 
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"compatible" observables, whereas two observables from sets of observ- 
ables tied to two different classes of measurement evolutions are mutually 
incompatible. 

Many textbooks as well as some research papers contain very confus- 
ing considerations and mathematical nuances concerning "successive or 
simultaneous measurements of compatible observables" versus the projec- 
tion postulate, formal commutation, etc. But in fact the qualifications 
"simultaneous" or "successive" simply are devoid of  relevance with respect 
to the physical features involved in the concept of compatible observables. 
Indeed consider first only one class of individual measurement evolutions, 
say Mx.  Each one measurement evolution from M x can be constructed-- 
physically--such that the one registration of one value Vxj of the "needle 
position" of the corresponding macroscopic device Dx produced by it 
permits one to calculate--from this unique physical datum, but with 
the help of various theoretical connecting definitions O~hxj=fhxj(Vxj), 
h = 1, 2 . . . .  , m - - a l l  the m different eigenvalues r labeled by the same 
index j, for all the observables Ohx from the set of mutually compatible 
observables corresponding to the class M x  of measurement evolutions. 
(Formally, this amounts to mathematical constructibility, out of O~, of any 
other observable O~ from this same class Mx, and to commutativity of Ohx 
and O~). So each set of m eigenvalues c0hj, h = 1, 2 . . . . .  m, produced by 
one registration Vxj, involves just one physical process of individual 
measurement evolution Mx,  covering just one given space-time support. 
No condition of (physical) simultaneity or successivity is involved. 

Consider now two distinct classes Mx and Mr.  These, by definition, 
are "mutually incompatible" in the sense that it is not possible to construct 
physically an individual measurement evolution such that the unique 
outcome Vxj produced by it permits calculation of both a corresponding 
eigenvalue tied with M x  and a corresponding eigenvalue tied with Mr.  This 
is what is commonly called "Bohr complementarity." Formally, this impossi- 
bility is expressed by mathematical nonconstructibility of an observable f~x 
corresponding to the class M x  from an observable Or corresponding to 
another class Mr,  and by noncommutativity between f~x and Or. 

The situation entails that, globally, the whole, the unity constituted by 
the ensemble of all the factual probability chains corresponding to a fixed 
operation of state preparation Pg, possesses a branching, a treelike space- 
time structure. Let us symbolize this treelike structure by T(P,) and let us 
call it "the quantum mechanical probability tree of the operation of state 
preparation P~0." 

Figure 1 provides a simplified example of a probability tree with 
only four observables: two compatible observables O~2 and Olb2 correspond- 
ing to the same class M12 of individual measurement evolutions, and two 
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Fig. I. 
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The quantum mechanical probability tree T(Pr of the operation of state prepa- 
ration P~,. 

incompatible observables ~'~3 and f~4 tied, respectively, to individual mea- 
surement evolutions M3 and M4. The factual, observational probability 
spaces corresponding to the measurement evolutions M12, M3, and M4 
realized on the state represented by ]~k) are indicated respectively by the 
notations [Vk,2], [Vk3], and [Vk4]. Each one of  the probability spaces [Vkn], 
n = 1, 2, 3, 4, emerges--with respect to an origin of  times reset to zero after 
each elementary quantum mechanical chain experiment--at some corre- 
sponding specific time tl2 (i.e., t12-  t), t3 (i.e., t 3 -  0, and t4 (i.e., t 4 -  t). 
The branch corresponding to f~2 and fl~2, so to Ml2, contains a very big 
number of  fibers P,-M~2-V12j each one of  which ends up with one needle 
position, say VI2S,~{V12j}, that permits us to calculate two distinct corre- 

a a b b sponding eigenvalues, c012j, e{oga2j} and c012y, e{o912j}, via two different 
theoretical definitions, o972j" =f~2(Vlzj,), co~2j, =f~2(Vlz:.,). The branch cor- 
responding to f~3, so to M3, contains a big number of  fibers P~,-Mn-V3:. 
each one of  which ends up with a needle position V3:.,e{V3j} that permits 
one to calculate a unique corresponding eigenvalue c03:.,~{o93j } via a theo- 
retical connecting function c03j, =f3 (V3j'). Similarly the branch correspond- 
ing to f~4, so to M4, contains a big number of  fibers P~,-Mn-V4j each one 
of  which ends up with a needle position V4:.,~{ V4j } that permits one to 
calculate a unique corresponding eigenvalue c04:.,~{c04j} via a theoretical 
definition o94:-, =f4(V4j). So the space [Vk12] is endowed with more specifica- 
tions than the spaces [Vk3] and [Vk4]. 

In all the fibers of  the tree the initial phase, of  state preparation, covers 
the same space-time domain A(P~) = AxAt (the common space-time trunk 
of  the tree), with At = t -- t o. In the case of  an evolution M~2 corresponding 
to the two commuting observables f~2 and f~2, the subsequent phase of  
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measurement evolution covers, for each fiber corresponding to the process 
MI: of measurement evolution, a unique space-time domain A(M~2). In the 
case of a measurement evolution M3 corresponding to the observable f~3 or 
a measurement evolution M4 corresponding to the observable f~4, the 
involved space-time domains are distinct, namely A(M3) and A(M4). 

So in the concept of probability tree of a state preparation P, ,  the 
individual, the elementary quantum mechanical chain experiments are 
explicitly represented and they determine the corresponding branching 
space-time structure of the tree. The other two involved levels of concep- 
tual izat ion-the statistical and the probabilistic--are generated by two 
distinct and hierarchically connected sorts of reiterations (Mugur- 
Schfichter, 1991, 1992a, 1992b) and they are implied only in the probability 
spaces from the tops of the branches, namely, respectively, in the algebras 
and in the probability measures from these spaces. 

A quantum mechanical probability tree is a remarkably comprehensive 
construct. Most of the fundamental algorithms of the quantum mechanical 
calculus which combine one normed state vector with the dynamical 
operators representing the quantum mechanical observables can be defined 
inside any one tree T(r 

1. The mean value of an observable ~ in a state with vector [r 
<r v ie) ,  v~. 

2. The uncertainty theorem, for any pair of observables: 

(~l(a~,YI, / ,  >('/'l(Ar~)fl'/ '  ) 
--- I<,/, I(i/2)(n, n: - n:n,)l , / ,>l = (1/2)e/2u),  v~ , ,  ~2 

3. The principle of spectral decomposability (expansion postulate) 

I~>=~e( 'P,o~j ) lu j ) ,  VI'P)o VA: Alu~>=~ojlu~) 
J 

[e(~, a~j) are the expansion coefficients] which permits us to calculate the 
probability density rc(~k, ogj) via the probability postulate 

,~(e,.,~) = I<u~l~>l ~= Ic(e, ~,~)1 ~ 
4. Finally, the whole quantum mechanical "transformation theory" 

from the basis {[uj)} of an observable f~, with eigenvalues e9 u to the basis 
{Irk)} of an observable f~2 that does not commute with ~1 and has 
eigenvalues co2j (so from a branch with measurement evolutions M~ to that 
with measurement evolutions Mz): 

e(~/, (D2k) = E O~kJ e(~l, (-DlJ) 
J 

v~ , ,n=:  n, luj>=o~,jluj> and f~2]Vk)=CO2klVk), Yj~J,  V k E K  
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(J, K are index sets for the eigenvalues of, respectively, ~'~1, ~'~2; O~kj = <Vk [Uj > 
are the transformation coefficients). 

2.8. The Principle of Superposition: A Calculus with Whole Trees 

But as soon as the principle of superposition comes into play the 
embeddability into one tree hits a limit. The corresponding algorithms 
cease to be embeddable into one single probability tree: Several trees have 
to be combined. The quantum mechanical formalism contains implicit 
calculi with whole probability trees. 

The principle of superposition is connected with expressions of the 
type 1r +A21r that combine (at least) three trees, namely 
those introduced by the three operations of state preparation P+~2, P~a, 
and P,2 corresponding to the three involved state vectors [~12), kkl ), and 
[~b2). The acceptance of such linear composition expressions for any pair of 
functions ~bl, r is a condition sine qua non for the formal representability 
of the set of such functions by "kets" [~k~) and [~b2) that are abstract 
objects forming a vector space. However, and this is of basic importance, 
the state vectors [~q2), [ ~ ) ,  and [~2) themselves are only indirectly 
concerned in the principle of superposition: 

�9 Regarded as a physical assertion, the principle of superposition 
concerns directly only the operations of  state preparation P~,, P~2, 
and e~,12 which produce the states with state vectors [~b~ ), [r and 
[~k~2) (Mugur-Sch/ichter, 1991, pp. 1405-1424). Namely it amounts 
to the following assertion: I f  the two operations Pr Pr are realizable 
separately, then also realizable is any operation P4,12 that is some 
functional of  these operations, Pr = G(21,42, P~l, Pr such that it 
produces the state with state vector [~k12)= ' h l r  22[q;2). 

On the other hand, the probability law for the state kk~2), for any 
observable f~, 

~(~12, f.Oj) = I<u,lr = 

= I<u;I , t , , / , ,  + >1 = 

= rr(~l, wj-) + Ir(~k 2, (oj) + ["interference" terms] 

"compares" the three probabilities rr(q+l, coj), rr(q+2, ogj), and zr(~k~2, ogj). 
Namely it refers the various probability measures {~(r oJj),jeJ}, V~, 
from the probability spaces of the unique tree obtained when the operation 
of state preparation P~,~2 = G(21,22, P+~, Pr is realized, to the corre- 
sponding probability measures {~r(~k,, ~oj),jeJ}, Vf~, and {rr(~O2, oJj),jeJ}, 
V~, from the trees that would be obtained /f the operations of state 
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preparation Pq,~ and P~02 w e r e  realized separately. In short, the well-known 
and so puzzling algorithmic injunction "the amplitudes of probability have 
to be added, only the probabilities interfere" corresponds to the following 
distribution of the descriptional roles: 

1. For the composition of the--nonobservable--state descriptors 
I~p ), a linear representation is chosen. This permits a vector space formalism 
for the state descriptors, which is highly convenient in calculations, but 
offers no possibility to express interaction between the physical effects of 
two separately realizable operations of state preparation P~ and Pq,2 when 
these are involved in a more complex operation of state preparation 
P~012 = G(21, 22, P~1, Pq,2)- 

2. For the composition of the--observable--probability distributions 
corresponding to a state described by a linear combination of state vectors, 
a nonlinear representation is chosen. This permits one to express the 
observable, factually existing mutual "influences" between the physical 
effects of separately realizable operations of state preparation when these 
are involved together nonsequentially, "in parallel," in a more complex 
operation of state preparation that produces the state represented by the 
considered linear combination of state vectors. 

This distribution of the descriptional roles is just a pragmatically 
convenient system of choices of representation. And it is most important to 
distinguish clearly between the formal features chosen for the representation 
of the studied facts and the physical characteristics of the facts themselves: 
notwithstanding the use that it makes of  vector spaces, quantum mechanics, 
by its quadratic definition of  probabilities, is a nonlinear theory that describes 
in general nonlinear processes. This is a noteworthy example of descrip- 
tional strategy. 

2.9. Spectral Decomposition of One State Vector Versus Superposition 
of Several State Vectors 

The concept of a quantum mechanical probability tree brings strik- 
ingly into evidence that the expressions of linear composition--in the 
mathematical sense--involved in the principle of spectral decomposition 
refer to facts that are fundamentally different from the expressions of linear 
composition involved in the principle of superposition: 

1. The principle of spectral decomposition concerns future results of 
the measurement on an already prepared state with state descriptor [~b), of 
the one dynamical observable tied to the considered decomposition: The 
root PC and the trunk [~b) of a single tree are given, and each one of the 
applications of the principle of spectral decomposition involves (is con- 
tained in) exclusively this one tree founded on this root-and-trunk 
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(Pr IV)), the object of study being what is denoted by "l~k)." The 
principle of spectral decomposition involves no reference to any other trees 
(Mugur-Sch/ichter, 1991, pp. 1412-1416). 

2. Whereas, as already emphasized, the quantum mechanical principle 
of superposition concerns basically operations of state preparation P~i, 
i =  1,2 . . . . .  n, so roots of several trees. Each one of these roots 
Pc, i, i = 1, 2 . . . . .  n, could found its own probability tree, but in fact this 
possibility is not realized, all the considered roots P~,i being combined in 
only one effectively realized operation of state preparation Pq, lZ..n = 
G(2~, 22, Pr P~,2 . . . .  , Pq, n) that founds only one tree; which, as men- 
tioned, entails reference relations between the one effectively realized tree 
and the several other possible trees (Mugur-Sch/ichter, 1991, pp. 1421- 
1424), in particular reference relations involving all the probability mea- 
sures from these other trees, for any dynamical observable. 

Besides these semantic mutual specificities, there are also purely math- 
ematical specifics of the linear composition expressions involved in the 
principle of spectral decomposition, with respect to those involved in the 
principle of superposition (Mugur-Sch/ichter, 1991, pp. 1412-1416). 

2.10. Two Sorts of Interference of Probabilities 

The fundamental difference between the physical significance of a 
spectral decomposition of one state vector and the physical significance of 
a superpsition of several state vectors splits the fundamental quantum 
mechanical notion of "interference of probabilities," into two essentially 
different sorts of interferences of probabilities (Mugur-Sch/ichter, 1991, pp. 
1412-1416). 

1. The interferences of probabilities entailed by the transformation 
theory [equation (2)] involve the principle of spectral decomposition ap- 
plied, for one state vector, to--necessarily--two bases introduced by two 
distinct and noncommuting observables f~ and f12; this sort of interference 
of probabilities is found to describe an abstract, only conceived "interac- 
tion" between the two--factually incompatible--predictional points of 
view (or grids) for future qualification of the studied state, corresponding 
to f~ and to f22. This first sort of interference of probabilities will be shown 
in the following sections to define the essential semantic difference between 
Kolmogorov probabilities and quantum probabilities, and, furthermore, to 
be a basic character of the informational approach. 

2. Whereas the interferences of probabilities tied to superposition state 
vectors [~b~2) = 211~/1 ) "31- 221~2), can emerge for a single observable f~ (any 
one), and they are found, as mentioned, to describe physical interactions. If 
f~ is the position observable, these interactions, in certain conditions, are 
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even directly observable. Furthermore, the interference of probabilities tied 
to the superposition state vectors are found to involve nonremovably a very 
peculiar model for what is called a microsystem, notwithstanding the 
orthodox claim that any model is banished from the quantum theory 
(Mugur-Sch/ichter, 1991, pp. 1429-1430). This second sort of interference 
of probabilities can be related to the basic specificities of nonsequential, 
"network," parallel computation as compared with the sequential Turing 
machine computations. 

2.11. Confusing Mathematical "Unifications" 

The Hilbert-Dirac formalism and language tend to identify the spec- 
tral decompositions of one state vector on a basis of eigenkets, with the 
superpositions of several normalized state vectors. Ipso facto they tend to 
identify also the interferences of probabilities entailed (within the transfor- 
mation theory) by the principle of spectral decomposability, with the inter- 
ferences of probabilities entailed by the principle of superposition. Such 
identifications cannot be regarded as a conceptual unification. They are just 
semantic confusion, within a flattening concept of linear composition--in a 
purely mathematical sense--of  "generalized kets" from a Hilbert space of 
kets. This confusion has secreted an opaque stratum of conceptual mud 
where the "interpretation problems" have floundered for more than 60 
years (Mugur-Sch/ichter, 1993, pp. 98-121). Furthermore, it conceals cru- 
cial significances involved in the quantum mechanical formalism, the very 
germ of a unified mathematical representation of the emergence and 
evolution of patterns inside networks of "information processing entities" 
of any kind. 

2.12. Global View 

So any observable quantum mechanical elementary event Vaj is 
brought forth by some elementary quantum mechanical chain experiment, 
some fiber Pq,-Mn-Vnj. These fibers are the semantic matter described by 
the quantum theory. Any fiber Po-Ma-Vnj- belongs to a probability chain 
(P, ,  Mn, {Vnj}) ~ [{Vj}, "rF, p(Po, Mn, Vn/)]. In its turn any probabil- 
ity chain belongs to a branch of a probability tree T(P~,), the tree tied to 
the operation Pq, of state preparation which starts that chain. So the 
probability trees define a partition on the set of all the chains (hence on the 
set of all the fibers, hence on the set of all the observable quantum 
mechanical elementary events Vn/). 

When one contemplates the landscape determined by this partition 
each tree appears endowed with its own "internal" calculus (mean value of 
any dynamical observable ~ with respect to the state vector I~b) tied to the 
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considered tree, the uncertainty theorem for this state, the principle of 
spectral decomposition, the predictional probability laws for this state, and 
the whole quantum mechanical "transformation theory" that relates the 
probability measures from the different branches of the tree), while the 
different trees are related by a calculus with whole trees determined by the 
principle of superposition and the probability law for superposition states. 
This is a hierarchical view (fibers, chains, trees, connections between trees). 
It draws attention to the role played by the space-time characteristics of the 
operations by which the observer produces the objects to be studied (state 
preparations) and the processes of qualification of these (measurement 
operations). 

How did the concept of a quantum mechanical probability tree 
emerge? We have performed just an attentive analysis of the connections 
between, on the one hand, Kolmogorov's standard fundamental probabilistic 
concepts (identically reproducible procedure, universe of elementary events, 
an algebra of events on this universe, a probability measure on this algebra) 
and on the other hand the main descriptors of the quantum mechanical 
formalism (state vectors, operators, eigenfunctions) and the factual coun- 
terparts of these. The unique novelty has been an explicit representation of 
the physical processes involved in the quantum mechanical random phe- 
nomena, with their space-time characteristics. And this novelty brought 
forth, with a sort of inner necessity, the probabilistic metaconstruct with 
treelike space-time support described above. But this metaconstruct, 
notwithstanding the fact that it has been produced by only a systematic 
confrontation with current standard probabilistic concepts, obviously tran- 
scends the abstract theory of probabilities as it now stands. Indeed, in 
Kolmogorov's approach the most complex basic probabilistic structure 
explicitly defined is one probability space. Not even the notion of a 
probability chain is explicitly defined as a basic monolithic construct. A 
fortiori, the concept of a probability tree, consisting of a whole family of 
irreducibly distinct but interconnected probability chains, a family of 
incompatible random phenomena rooted into the same operation of state 
preparation, is devoid of an abstract equivalent defined within the current 
theory of probabilities. 

�9 In Kolmogorov's approach, features induced by the space-time char- 
acteristics of  the random phenomena have somehow been abstracted 
away. 

This first conclusion already suffices for proving the fundamental 
importance of an explicit use of the abstract concept of a probability chain, 
and of an explicit specification, in any application, of the physical structure 
and content of the involved random phenomenon, with its space-time 
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characteristics. The structure and content of the random phenomenon that 
generates a probability space are the very roots of the probabilistic concep- 
tualization. So far these roots have remained hidden. We shall now show 
that, uncovered, they bring into evidence the basic difference between 
Kolmogorov probabilities and quantum probabilities, and furthermore 
they reveal a basic unity between the quantum probabilities and the 
informational approach. 

3. QUANTUM PROBABILITIES VERSUS KOLMOGOROV 
PROBABILITIES 

3.1. "Deterministic Probahilistic Metadependence" between Branches of 
One Tree 

It has been often emphasized that the quantum mechanical formalism 
does not define conditional probabilities relating, for a given state vector, 
the probabilities of eigenvalues of noncommuting observables. Nevertheless, 
and this is a striking fact, the quantum mechanical transformation theory 

= XJ vn , ,  tuj > = t,,J >, n lvk > = Iv,  >, 
YjeJ, VkeK, J, K index sets, ~kj = (Vk ]Uy ) the transformation coefficients] 
permits us to determine entirely from the knowledge of the whole probability 
measure n(~b, f~) from one branch of a probability tree, any probability 
density [c(~, oJ~)12 of any elementary event (so also of any event) involved 
in another branch of that tree tied to an observable O~ which does not 
commute with f~l. So the quantum mechanical transformation theory is 
equivalent to the specification of a functional relation 

re(C, ~')2) = FQM[/~(~b, k')l)] (4) 

between the two measures r~(~b, f~2) and n(~k, ill), which amounts to 
coding the measure n(~b, f12), initially expressed in its "native" language 
{[vk>, co2k[} introduced by the observable f~2 itself, into the "foreign" 
language {luj >, r I} that is the "native" language of the measure rr(~k, ~ , )  
concerning another observable s incompatible with s 

The relation (4) can also be regarded as a "deterministic probabilistic 
metadependence" in the following sense: According to the current theory of 
probabilities the concept of "probabilistic dependence" is by definition 
confined inside one probability space where it concerns isolated pairs of 
events. Two events are fled by a "probabilistic dependence" if knowledge of 
one of these events "influences" the expectations concerning the other one. 
So the relation rc(~b, f~2)= FQM[rC(t~, f~l)] of mutual determination of the 
probability measures from a quantum mechanical probability tree can 
naturally be regarded as a "deterministic probabilistic metadependence": 
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"deterministic" because it consists in mutual determination; "probabilistic" 
because, though this determination is a certainty about "influence," never- 
theless it concerns probabilistic constructs; "metadependence" because it 
concerns, not pairs of events from one space, but globally pairs of probabil- 
ity measures on entire algebras of events from incompatible probability 
spaces, which, with respect to events, are meta entities. 

The notion of a probabilistic metadependence can also be upheld 
otherwise (Mugur-Sch/ichter, 1992b, pp. 990-991). Imagine a physicist 
who does not yet know which state vector [ff) "describes" the state 
produced by the operation of state preparation P~,. So he makes various 
measurements on this state in order to establish experimentally relative 
frequencies permitting one to induce the postulation of probability densities 
that shall determine an adequate mathematical descriptor kk) (Mugur- 
Schfichter, 1991, pp. 1408-1412). Suppose that he decides to work with 
two noncommuting observables fll and f12, and, on the basis of some 
reasons, envisages two sets of possible probability measures on the corre- 
sponding spectra, namely Z 1 = {7g(~r ~ l  ) } and E2 = {rc(~k, f~2) }, respectively 
(for simplicity suppose they are discrete). The physicist now asks: What is 
the (meta)probability for finding, by measurements, this or that probability 
measure from El or this or that probability measure from Y~2?" In the 
absence of any criteria for answering otherwise, he will have to presuppose 
equipartition on both Et and Z2. 

Suppose that, furthermore, the physicist has to answer the problem: "If  
for the spectrum {c9ml } off~l the probability measure were lrk(ff, f2~) eEt (k: 
known), what would be the corresponding conditional probability to find this 
or that measure lr(~k, f~2) from E2 on the spectrum {%-2} of eigenvalues of 
f~2?" This new problem concerns now the product-probability space where 
the elementary events are all the possible associations (n~(~k,f~l), 
n(~, f~2)) between the one measure 7rk(~k, f~l) ee l  (supposed known) and the 
various unknown probability measures envisaged in the set E2 = 
{n0P, f~2)}. Now, in the absence of any theory or data, the physicist, again, 
must presuppose equipartition--which amounts to presupposing indepen- 
dence between nk(O, f~) and the measures ;~(~b, ~2)e]~2; that is, that the 
probability of a joint event (rCk(r t21), rc(~, ~q2)) is the product of the 
probability of the known measure ~ze(r f~l) (fixed) and of the proba- 
bility of the unknown measure re(C, f~2) (variable inside ~'~2 and there a 
priori posited to be uniformly distributed). But the quantum mechanical 
transformation theory imposes another answer, directly opposed to this 
one. Namely, it asserts that the probability measure on the universe of 
elementary (meta)events (rck(~k,f~l), re(q/, f~2)) is a Dirac dispersion-free 
measure that associates the probability 1 to the unique joint event 
(nk(~, f~l ), zt(~k, f~2)), where n(~, f~2)eZ2 is related with the known measure 
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nk(~ b, f~l) EEl according to the set of equations rc(~O, c02j ) = 
I~-.~ ~%ck(~ b, ~~ 2, Vj ~J, Vm e M  (J, M are index sets), while the probabil- 
ity of any other one of the considered joint events (rck(~, ~1), n(~, f~2)) is 
posited 0. Which means maximal, deterministic "dependence." 

Obviously, the "deterministic probabilistic metadependence" defined 
above transcends the Kolmogorovian concept of probabilistic dependence. 
Probabilistic dependence in Kolmogorov's sense does not concern the meta 
concept of whole probability measures, it concerns individually and on the 
first level of probabilistic conceptualization two distinct events from the 
algebra from a probability space. As to correlation (functional relation) 
between two whole measures from two distinct spaces, when it is asserted 
in Kolmogorov's sense it involves that these two spaces can be imbedded 
into a unique product space where the universe of elementary events is 
produced--physically--by one random phenomenon, and where the ele- 
mentary events from the primitive spaces reappear now in the algebra as (in 
general) dependent events, in Kolmogorov's sense. The quantum mechani- 
cal concept of "deterministic probabilistic metadependences" repels these 
characters. 

3.2. The "Potential-Actualization-Actualized" Character of a 
Probabifity Tree 

Any criterion of mutual consistency of a set of probability measures 
(Accardi, 1983; Gudder and Zanghi, 1984; Pitowski, 1986; Beltrametti and 
Maczynski, 1991) certainly reflects some factual unity inside the involved set 
of random phenomena. The relations (4)--insofar as they are required by 
the quantum mechanical transformation law (2)- -can be regarded as a 
quantum mechanical condition of mutual consistency of the set of probabil- 
ity measures from a probability tree. Now, the mathematical nucleus of the 
relations (4) entailed by (2) consists of the unique state vector I~O ) concerned 
by that tree, that labels the unique result of a given operation Pq, of state 
preparation: 

�9 Thequantummechanical"deterministicprobabilisticmetadependences" 
(4) between probability measures from distinct branches of a given 
probability tree reflect the factual oneness of the studied state from the 
common trunk of that tree. 

Indeed the state with state vector I~), repeatedly reproduced by the 
reiterations of the operation P~0 of state preparation, somehow "is" there 
each time that one operation P~, has been achieved: in a certain purely 
physical-operational sense this state has been created, defined, it has been 
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extracted out of the continuum of "reality" and endowed with physical 
specificities imprinted upon it by the operation Pc,. But these specificitiesmif 
we take the liberty to posit their ontological being--lie nevertheless outside 
the realm of the observable. So from the point of view of knowledge they 
hold the role of merely a certain just posited monolith of indefinitely many 
still nonrealized sets of potentialities of outcomes of only possible but 
indefinitely many future processes of observation that can be performed on 
what is labeled kb). 

�9 The operation of  state preparation Pc, acts as a noncognitive, purely 
physical definition of  an infinite set, but a set of  mere potentialities. 

With respect to the Frege-Cantor theory o f  infinite sets as well as with 
respect to all the logical approaches proposed so far, this is an essential 
innovation (Mugur-Sch/ichter, 1992c, pp. 254-260). 

The ontological content conceived for the indefinitely many infinite sets 
of still nonrealized potentialities physically defined by the operation of state 
preparation Pc, is nonremovably relative to corresponding indefinitely many 
conceivable future processes of observation. This relativity generates, for the 
monolith of potentialities labeled [~,), classes Mx, M r , . . .  of mutually 
incompatible processes of actualization of this or that particular set { V~7 }, 
{Vrk } , - . .  of actualized observable manifestations of interaction of the 
studied entity (state), with this or that sort of macroscopic device 
Dx, D r . . . . .  On these various sets of actualized manifestations of interac- 
tion are then founded the various possible actualized observable branch- 
probability spaces from the considered tree. 

�9 Theprobability tree of  a state with state vector kb) is a unity endowed 
with a "potential-actualization-actualized character" ("potential" by 
what is labeled kk); "actualization" by the measurement evolutions 
Mo; "'actualized" by the registered eigenvalues roj =ft~(Vtaj-). 

In other terms, and this is in striking contrast with the role assigned to the 
random phenomenon in Kolmogorov's approach: 

�9 The random phenomenon from any given factual quantum mechanical 
probability chain (1") is posited to factually create the elementary 
events from the chain. 

The elementary quantum mechanical projectors onto the one-dimensional 
subspaces from a basis of the Hilbert space of a microsystem, are in fact 
"factual generators." The purely geometric character assigned to them in the 
calculus is factitious and deprives them of the time and change that they 
involve. The formalism of quantum mechanics occults the durations of 
the individual measurement evolutions that produce the factual quantum 
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mechanical elementary events from the factual chains (1"). Nevertheless, 
their hidden temporal dimension imprints a nonremovable mark on the 
formalism, in particular on its factually significant logical features (Mugur- 
Sch/ichter, 1992b, pp. 974-983). Once this is clear, one understands intu- 
itively why formal proofs of incompatibility between the quantum 
mechanical formalism and hypotheses of "objectification"--weak or strong 
(Busch and Mittelstaedt, 1991; Busch et al., 1992)--are certainly correct in 
their conclusion, no matter how these proofs are constructed. 

Now, while the "deterministic probabilistic metadependences" (4) 
between the probability measures from two distinct branches of one tree, 
regarded as wholes, reflect the oneness of the studied state with state vector 
kb) from the common trunk of that tree, we assert that: 

(a) The absence, beneath the global functional relation (4), of joint or 
conditional probabilities relating events (elementary or not) from two 
distinct branches of a tree reflects the fact that a quantum mechanical 
random phenomenon is conceived to create ontologically the corresponding 
elementary events. 

(b) The interference of probabilities in the sense (2) of the quantum 
mechanical transformation theory reflects the fact that the elementary events 
Vx/and Vrk that determine, respectively, the eigenvalues ~Ox/=fxj(Vx/) and 
09rk =fy(Vrk ) of two noncommuting observables f~x and f~r tied to two 
incompatible classes of measurement evolutions Mx and Mr,  cannot be 
actualized simultaneously for one replica of the studied state. 

Preliminarily, these contentions can be upheld by a comparison with 
Kolmogorov's representation. Afterward, with the information theory, we 
shall obtain a deeper insight. 

3.3. Koimogorov Transformation Theory 

Kolmogorov's representation presupposes, implicitly but quite essen- 
tially, that the elementary events from a universe U and the events from the 
algebra z considered on U are entities (objects, states) with properties 
which--ontologically--all preexist actualized to the considered random 
phenomenon. The paradigm is extraction from an urn. The random 
phenomenon which brings forth a probability space [U, z, rc] is assumed to 
describe exclusively the emergence of cognitive connections between the 
observer's consciousness and these ontologically preexisting actualized 
properties. Let us examine the formal consequences of this posit. 

Imagine an urn with N objects in it, each one of which possesses actual 
qualifications of two types, a type of qualification Aj of some "nature" A, 
realized via the "values" j ( j  = 1, 2 . . . .  , n) that the nature A assumes, and 
a type of qualification Bk of a "nature" B, realized via the "values" k 
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(k = 1, 2 , . . . ,  m) assumed by the nature B (for instance: A = form = f a n d  
j = cubic, spherical . . . .  , pyramidal; B = color = c and k = red, whi t e , . . . ,  
dark). In these conditions the classical theory of probabilities introduces 
the expressions 

p(Aj) = p(Aj, Bk) = Y. p(aj/Bk)p(Bk) =  jkp(Bk) (5) 
k k k 

where p(Aj, Bk) is the joint probability to extract an object with qualification 
j of nature A and qualification k of nature B, and p(Aj/Bk) =~jk is the 
conditional probability to extract an object with qualification k of nature B, 
given that its qualification of nature A is j. In (5), just as in the quantum 
mechanical "transformation relation" (2), [c(~k, O)2j ) [ 2 ~---[~'~k O~kjC(~l, (Dlk)12, 
the probability of emergence of a qualification j from a given class A is 
expressed as a function of the probabilities of emergence of all the possible 
qualifications k from another class B. In this sense (5) also is a "transforma- 
tion law," like (2). But in (5) the probabilities p(Bk) do not "interfere" inside 
the second part q[~ the equation, i.e., the probability p(Aj) is a linear 
combination of the probabilities p(Bk). This formal character translates 
directly the assumption of the existence of definite joint probabilities 
p(Aj, Bk) for the events (A j, Bk), so of definite conditional probabilities 
p(Aj/Bk) [since these, in (5), are themselves the coefficients ~tjk of linear 
combination]. In its turn, the assumption of existence of joint and condi- 
tional probabilities is entailed by the more basic assumption of actualized 
ontological preexistence, for each object from the urn, of an A-and-B 
qualification: It is in consequence of this last assumption that a random 
phenomenon where the identically reproducible procedure is reducible to the 
paradigm of extraction from the urn can produce a universe of elementary 
events consisting of joint qualifications (Aj, Bk). Then each qualification (Aj) 
or (Bk) --separately--labels an event from the total algebra on this universe 
of joint elementary qualifications, and all the considered probability assigna- 
tions p(Aj), p(Bk), p(Aj, Bk) are embedded into a unique probability space, 
thus forming a "classical polytop" (Pitowski, 1989) or a "classical correla- 
tion sequence" (Beltrametti and Maczynski, 1991). In short, the semantic 
assumption of actualized ontological preexistence of all the considered 
qualifications generates all the syntactical characteristics of the Kolmogorov 
concept of probability, in particular, the linear character of the Kolmogorov 
transformation law (5). 

Notice that the same formal effect (5) can be obtained also via the less 
restrictive semantic assumptions of either (a) the possibility of simultaneous 
actualization of ontological properties of the studied entity producing all the 
considered qualifications (elementary events), or (b) the possibility of 
actualization of only one ontological property of the studied entity which 
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in its turn produces simultaneously all the considered qualifications, as 
happens inside one branch of a quantum mechanical probability tree. 

3.4. Incompatibility with Quantum Mechanics of the Kolmogorov 
Transformation Law 

The formalism of quantum mechanics is incompatible with a general 
acceptance of any one of the semantic assumptions able to entail (5). The 
various sets { Vxs }, { V~,k } . . . .  of mutually incompatible qualifications 
produced by the random phenomena stemming from a single operation of 
state preparation are all assumed quite essentially not to preexist ontologi- 
cally actualized: if they were not, it would not be possible to associate them 
all with a single operation of state preparation. So two such sets { Vxj } and 
{ Vrk } can only belong to two different random phenomena involving two 
incompatible classes of individual measurement evolutions Mx and Mr, 
respectively. So no universe of elementary events consisting of simultaneous 
(joint) qualifications (Vxi, Vyk) can ever be both factually produced for the 
same single replica of the studied entity. Then each one of the sets {Vxj}, 
{ Vrk }, �9 �9 �9 - - i n  the role of a universe of elementary events--can only found 
its own factual probability space, structurally different from all the other 
ones. No unique probability space is factually constructible where it is 
possible, as for Kolmogorov probabilities, to locate definite individual 
conditional probabilistic connections p[(Vxs)/Vrk] between qualifications 
from the two sets {Vxs} and {Vrk }, belonging all to the same "classical 
polytop." In such conditions a linear transformation law of the type (5) 
would be devoid of factual counterpart. 

And indeed--faithful to operationality--the quantum mechanical 
transformation theory asserts instead the transformation law (2), 
Ic(~, ogrk)12 = I~j ~kjc(~b, O~xj)] 2, where in the second part of the equality, 
besides a linear superposition of the probabilities Ic(qJ, O~xj)I 2, there appear 
also other, "interference" terms: This is a formal signature of the basic 
semantic difference between Kolmogorov probabilities and quantum 
mechanical probabilities. 

4. QUANTUM MECHANICS VERSUS INFORMATION THEORY 

Formally it is clear how the quantum mechanical bra-ket algebra 
produces the transformation algorithm (2). Also, it is quite remarkable that 
it does produce it. Yet, the algorithms of quantum mechanics offer no clue 
whatever permitting one to understand the physical and conceptual implica- 
tions of the quantum mechanical transformation theory; they suggest no 
model concerning the real processes that bring forth the results asserted by 
them. 
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On the other hand, consider the theory of information. This theory 
- -qui te  basically--involves probability laws. However, the deep relation, 
within this theory, between numerical probabilistic estimations and the 
other representations remains obscure, 

We shall now show a far-reaching fact: namely, that in its essence the 
informational concept of probability is the same as the quantum mechanical 
one, so fundamentally distinct from the Kolmogorov concept of  probability. 
Guided by the recognition of  this semantic unity, we shall be able, despite 
radical differences between the quantum mechanical system of representa- 
tion and the informational one, to sketch out an informational transforma- 
tion theory which is clearly comparable with the quantum mechanical 
transformation theory. This amounts to the construction of an intelligible 
model for the physical processes involved. The way in which this model 
emerges, the nature of the encountered resistances, and the content of the 
result, suggest the possibility to synthesize a new formalism where a. 
generalized bra-ket algebra on a vector space is explicitly related to the main 
elements of the general informational representations of input and output 
sources connected by channels. Such a formalism might be able to represent 
mathematically the emergence and circulation of patterns of any kind. 

4.1. Information Trees 

Consider an information source S = {(Ai, p(Ai)), i = 1, 2, . . . ,  n} with 
zero memory, which emits an input alphabet A = {Ai} with input probabil- 
ity law p(Ai) on it. Consider also an information channel C, which, when 
it is associated with the input source S, yields an output alphabet B = {Bk} 
with an output probability law p(Bk) on it, k = 1, 2 . . . .  , r. Together, the 
input source S and the channel C form an information system 1(S, C). In 
the most general case any input sign Ai can, with a certain conditional 
probability p(Bk/Ai), produce any output sign Bk (in particular, p(Bk/Ai) 
can be 0 for this or that pair (Ai, Bk)). Inside 1(S, C), the channel C 
is defined--relative to the information source S - - b y  a channel-matrix 
M(C/S) of which the elements m,.k are the conditional probabilities 
p(Bk/Ai) for an output Bk, given a definite input Ai: 

M(C/S) = [mtk] = [p(Bk/Ai)] 

where the possible inputs Ai are displayed in row and the possible outputs 
Bk are displayed in column. The total probability of an output Bk is 
calculated as 

p(~k) = ~ p(Ai)p(Bk /A i) 
i 

If  in particular the matrix M(C/S) is such that each input sign can 
produce at most one output (each row from M(C/S) contains only one 
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nonzero element, which is 1), the information system I(S, C) is called 
"deterministic with noise," because it ensures certain prediction but only 
probabilistic retrodiction. 

If  M(C/S)  is such that one given output can be produced by only one 
input (each column contains only one nonzero element), the information 
system I(S, C) is qualified as "nondeterministic without noise," because it 
ensures certain retrodiction but only probabilistic prediction. 

The central point in this context is that an input alphabet {(Ai, p(Ai)), 
i = 1, 2 . . . .  , n} emitted by the input source S from an information system 
I(S, C) denotes an ontological initial content which in general is transformed 
by passage through the channel C from that system. The channel C factually 
creates the observed output alphabet ((Bk, p(Bk)), k = 1, 2 . . . .  , r}. So, with 
respect to the channel C and the observed output alphabet, the input source 
S = ((Ai, p(Ai)), i = 1, 2 , . . . ,  n} acts as a mere potentiality. And with 
respect to another channel C ' ~  C, this same source S acts as a different 
potentiality, in the sense that it entails another observable output alphabet, 
{(B'k, p'(B'k)). So the input source S = ((Ai, p(Ai)), i = 1, 2 , . . . ,  n} can also 
be regarded as a set of  indefinitely many potentialities, relative to the 
indefinitely many channels to which it can be connected. Between an input Ai 
and an output Bk there is process, there is "relative time", time populated 
by change relative to the acting pair (S, C). The conditional probabilities 
p(Bk/Ai)  from the matrix of the acting channel C with respect to the acting 
source S are Bayes conditional probabilities, not Kolmogorov conditional 
probabilities (Jaynes, 1979). But this reproduces the very essence of the 
concept of a quantum mechanical probability tree. This concept, then, quite 
fundamentally, must be transposable in informational terms. Let us perform 
the transposition. 

Consider a quantum mechanical probability tree. The operation Pc, of 
state preparation that generates the tree can be regarded as an "information 
source" without memory. According to orthodox quantum mechanics, such 
an information source emits only one input sign, namely the state repre- 
sented by the state vector [~,). Furthermore, each type of process of 
measurement evolution Mx, M r  . . . .  from a branch of the probability tree 
can be regarded as a particular sort of information channel; let us call it a 
"quantum measurement information channel" Cx, C~, . . . . .  producing, 
on a corresponding output device Dx, Dy . . . .  , an output alphabet 
{Vxj}, [Vrk} . . . . .  respectively. So--according to orthodox quantum me- 
chan i c s - each  branch of a probability tree acts as a nondeterministic 
information system I(Pr Cx ), I(P~,, Cr ), �9 �9 without noise corresponding to 
a set of observables {~h, h = 1, 2 , . . . ,  l} all tied to the same class M x  of 
individual measurement evolutions, or, respectively, to a set of observables 
{f~g, g = 1, 2 . . . . .  s} all tied to another same class My  of individual 
measurement evolutions, etc. For the information system I(P~,, Cx), for 
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instance, the channel matrix and the output probability law are 

M(Cx/P,)  = [m,j] = [p(VxJ@)] (6) 

p(Vxj) = p(@)p( Vxj/~) = P(Vxj/~b) 

with p(~b)=l (Mugur-Sch/ichter, 1991, pp. 1402-1405) and where 
p(Vxj /~) = p(P,,  Mx, Vxj) are the quantum mechanical factual probability 
densities from (l") which, via the functional relations cohxj=f~v(Vxj), 
generate all the quantum mechanical eigenvalues co~j and the corresponding 
predictional probability densities n(~, cohxj) = [c(r cohxj)[ 2 for all the observ- 
ables f~hx. Because the input alphabet emitted by P~, contains only one input 
sign I~) from (6), M(Cx/P,)  from (6) is a column matrix of factually 
observed probabilities p(Vxj/~) that, by the expansion coefficients c(~b, COhxj), 
generates all the column-ket matrixes representing the state vector ]r  with 
respect to the basis of common eigenkets of all the observables f]hx tied to 
the eigenvalues cohxj of this or that observable f~hx, h = 1, 2 , . . . ,  l: 

�9 A quantum mechanical probability tree T(P,)  can be regarded also as 
an "'information tree" IT(P,) ,  i.e., as a branching structure of  
information systems obtained when one given input source is combined 
with all the mutually incompatible "quantum measurement channels" 
connectable to that source. 

This shows that-- in its semantic essence--the informational concept of 
probability can be identified with the quantum mechanical one. 

4.2. An Informational Transformation Theory? 

In such conditions one expects furthermore an informational-Bayes 
transformation theory of the same type, in essence, as the quantum mechan- 
ical one. So we now ask: What, expressed in the language of the theory of  
information, is the relation between two output probability laws, regarded 
as wholes, corresponding to two different branches from the information 
tree IT(P, )  corresponding to a given state vector [~)? For instance, between 
the output probability laws produced from [~b) by two incompatible 
processes of measurement evolutions Mx r Cx and M r  "~" Cr? 

Now, as far as we know, information theory, as it now stands, does not 
contain an answer to this question. There is no informational transformation 
theory stating a general relation between the output probability laws of 
incompatible information systems involving the same source. 

Moreover, it is not even possible to work out such an answer so long 
as one conserves the hypothesis of only one input sign (in our case [~k)) 
produced by the considered source (in our case P~,): with this highly 
degenerate hypothesis that entails in (6) a column matrix M(Cx/P~), the 
informational formalism--contrary to the quantum mechanical vector 
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space bra-ket algebra--offers  no indications whatever as to how one could 
advance beyond the separate assertion of  each one of the mutually incom- 
patible output laws connected with [~b), in order to elaborate a connection 
between these. Inside the informational system of  representation the situa- 
tion seems to be blocked. 

4.3. Macroscopic-Microscopic Representation of an Information System 

Howeve r - - and  this is a noteworthy fac t - - the  obstacle, though it does 
not dissolve, recedes as soon as one supposes "hidden variables." 

Suppose that a quantum mechanical operation of  state preparation P ,  
creates, at the microscopic level of  specification, a physical mode of  existing 
of  the studied state labeled by the state vector [~)  that can be globally 
characterized by one from a whole set A = {2i, i = 1, 2 , . . . ,  n} of  n pos- 
sible different "hidden" input signs, n > 1, P(2i) being the input probability 
of  a given 2i~A. Now, for reasons of  descriptional homogeneity, a micro- 
scopic input state represented by an input sign 2i can only be conceived to 
combine directly with an equally microscopic channel state. So suppose 
that in each one realization of an elementary quantum mechanical chain 
experiment P~-Mx-V:rj the Cx-channel situation corresponding to the 
involved individual measurement evolution Mx, such that in that realiza- 
tion it emerges at the microscopic level, can be globally characterized by 
one from a whole set of  different possible "hidden" channel-state signs, 
respectively {#rx, r = 1, 2 , . . . ,  m }, m > 1. 

Consider now two mutually incompatible measurement evolutions Mx 
and Mr .  We introduce the following symbols. 

�9 {(2i, #rx)} ~xj and {(2i, #st)} -~rk, respectively, are the set of  all the 
pairs (2i, grx) that can contribute to the output Vxj, and the set of  
all pairs (2i, g~r) that can contribute to the output Vrk. Also, 
(2l,/~x) ~xi and (2~,#~r) -'Yk, respectively, are an dement  of  
{(2,, #rx)} ~xj and an element of  {(2i, ~tsr)} -~r~. 

�9 {2~ }-~xJ and {2~ }-~ rk, respectively, are the set of  all the input signs 2~ 
that can contribute to the output Vxj, and the set of  all the input signs 
2i that can contribute to the output Vrk. Also, 27 x: and 2 7  rk, re- 
spectively, are an element from (2; }-'xJ and an element from {2~ } ~ rk. 

�9 t#-~ is a channel sign #,x such that, if associated with 2,-, it generates 
a pair (2j, #,x) -'xj, and, ;/~r k is a channel sign #, r  such that, if 
associated with 2 ,  it generates a pair (2~, #,r) -'rk 

The notations containing an arrow are "predispositional" notations, in 
the sense that they qualify capacities of  the input signals 2~ relative to this 
or that possible future observable output Vx:, or Vrk, etc. In agreement with 
statistical thermodynamics, the defined notations presuppose the condition: 
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(CsT) For any channel Cx, one given observable macroscopic output 
Vxj in general can stem from any pair (2i, #,x)e{(2~., #rx)}-~xL 

We furthermore admit the following rather unavoidable "deterministic" 
postulate: 

(PrO A given pair (At, #rX)-+XJ can produce only one corresponding 
macroscopic output Vxj. 

Consider now a predispositional set {2i}-'xL The information theory 
admits in general nonrestricted possibilities concerning the transformations 
from an input signal 2i to an output sign Vxj: 

(Crr) For any channel Cx, each input sign 2~ is able to contribute 
either to any output sign from the output alphabet { Vxj }, or to 
only some of these signs, or to none; so a given output sign Vxj 
can be connected with several or all input signs 2i. 

But the formalism of quantum mechanics implies the following restrictive 
condition CQM: 

(CQM) Each elementary quantum mechanical chain experiment P~,- 
Mx-Vxj from any quantum mechanical random phenomenon 
does end with some factual result Vxj. So each input sign Ai 
contributes to at least one output sign Vxj, for any I(Pr Cx). 

In consequence of Csr and PD, with respect to the set {(2i, #rx), 
i = 1, 2 . . . .  , n, r = 1, 2 , . . . ,  m)} of all the possible pairs (Ai, #x~) (regarded 
as a new input alphabet produced by the individual interactions between 
the source Pr and a quantum measurement channel Cx, entirely specified 
at the microscopic level of description), an information system I(Pr Cx) 
acquires now the structure of a deterministic system with noise, ensuring 
certain prediction but only probabilistic retrodiction. Compared with the 
initial direct informational transcription (6) of the orthodox quantum 
mechanical assumptions, which require only one input sign ]~b> and 
consequently translates into a nondeterministic information system 
I(P,, Cx) without noise, the situation appears as simply reversed. 

So, instead of highly degenerate channel matrixes of the form (6), a 
microscopic-macroscopic characterization yields now the following quan- 
tum-measurement-channel matrixes for any two mutually incompatible 
information systems I(Pr Cx) and I(P,, Cv) from the information tree 
IT(Pc,) of the operation Pv, of state preparation: 

m(cx /P~ , )  = [rex, u] = [p(VxN(A, ,  ~ - ) ]  = [~,~,~] 
(7) 

M(Cr/Pr = [mr,;k] = [p(Vrk)/(Ai, #~r)] = [~g~,k] 
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where, by definition, 5;rj = 1 if the pair of indexes i, r corresponds to a pair 
(2f, l~rx)e{(2i,#rx)} -'xj, and otherwise 6~r,j.=0; 6es,k=l if the pair of 
indexes i, s corresponds to a pair (2;, #r~)e {(2~k, #~r)} ~rk, and otherwise 
6i~,k = 0. Furthermore, the channel situation is independent of  the activity of  
the source, so we just set p(2.  #rx)=P(2i)p(#rx). This, together with the 
form (7) for the channel matrixes, entails for p(Vx:) and p(Vrk) the 
following successive expressions 

p(v,,j) = E 
i r 

= ~ EP(2,, #,x) ~x: = ~.p(2,) EP(~#~)~,,.: 
i r i r 

P(VYk) = E E p(/~i' # s Y ) p ( V y k / ( t ~ i '  ~sY) 
i s 

(8) 

i - -+k 

i r i s 

The representation (7), (8) defines--for the particular case of the 
information systems I(P~, Cx), I(P~, Cr), etc., from a quantum mechani- 
cal information tree IT (P~) - - a  two-level extension of the customary 
one-level informational representations: the macroscopic (Vxj, Vrk) and the 
microscopic (2i, #rX, #st) levels of any information system I(Cx/P~,) from 
IT(P~) are now both explicitly represented and connected. This entails 
already a nontrivial consequence: 

�9 The representation (7), (8)yields, for the quantum measurement 
theory from any attempt at a hidden variables interpretation of  
quantum mechanics, a general informational framework, where now 
also any individual quantum mechanical chain experiment is repre- 
sented, namely by a corresponding sequence P~o-(2i, #,~)-Vt~y of  a 
macroscopic operation P~, a nonobservable microscopic pair (2 i, IZr~) 
and a macroscopic observable output Vaj. 

4.4. On an Informational Transformation Law 

In contradistinction to the initial one-level representation (6), does the 
two-level representation (7), (8) permit us finally to express in informa- 
tional language a transformation law? 

The answer will be very instructive: It will appear that, starting from 
the two-level representation (7), (8) and taking into account, as a guide, the 
essential characteristics of the quantum mechanical transformation law (2), 
it is possible to build at least one informational expression of a transforma- 
tion law. This expression can be obtained in a form which--in a certain 
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quite fundamental sense that stems directly from the basic semantic identity 
between the quantum mechanical and the informational concepts of proba- 
b i l i ty- is  the "same" as the quantum mechanical form (2). But such an 
informational expression of a transformation law can be drawn into 
existence only by struggling against strong descriptional resistances; correl- 
atively, it is not effectively computable, in contradistinction to the quantum 
mechanical law (2). Quantum mechanics represents its particular sort of 
information systems in a way which is radically different from the informa- 
tional one, far more performable from a computational standpoint, and 
possibly, conceptually innovating. The contrast will suggest possibilities of 
a new, synergetic representation. 

Preliminarily, let us notice that--from the outset--an informational 
transformation law of the Kolmogorov type (5) is excluded, since in an 
information tree IT(P~,), just as in a quantum mechanical tree, the output 
signs are factually created by passage of the input signals through the 
acting channel, so one cannot define factually significant conditional proba- 
bilities relating directly an output Vxj produced by a channel Cx with 
outputs Vrk produced by another channel Cr that is incompatible with Cx. 

Consider now the quantum mechanical transformation law (2) 

,o j) = Ic( , 2 

= ~ ~j~c(~, o~;k) 2 

= E [~jk 12 [c(~b, o9~)12 + ["interference" terms] 
k 

= ~ ]a% [2n((~,, co~k) + ["interference" terms] 
k 

This law equates the probability density rff(r r of a eigenvalue a~hxj of 
an observable [Px tied to measurement evolutions Mx, with a linear 
combination ~ ~o~) of the probabilities n((~,, r of all the 
eigenvalues CO~k of another observable f~hr tied to measurement evolutions 
M r  incompatible with the evolutions Mx, plus ["interference" terms]. 
Examine the involved coefficients, c% = (vk [uj ). These are the elements of 
the transformation matrix Sxy from the basis {[uj >} of common eigenvectors 
[uj) of all the observables D h tied to the measurement evolution Mx 
from the channel Cx, to the basis {[Vk )} of common eigenvectors [Vk ) of all 
the observables f ~  tied to the measurement evolutions M r  from the channel 
Cr. By means of the passage from the eigenvector [uj) to the eigenvector 
Irk >, a number ayg = <V k [Uj> characterizes the passage from the factual 
output Vxj corresponding to [uj > to the factual output Vrk corresponding 
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to Irk ) Ithe "degenerate" relations between eigenvalues being accounted 
for with the help of the involved connective functions oghxj =fhx(Vxj), 
c0~k _rh_jy~Vrkj, ~ etc.]. So each coefficient ~jk has a value depending on the 
involved pair of factual outputs Vxj and Vr~: o% = ~jk(Vxj, Vr,). Further- 
more, notice now that each coefficient ~jk is: (a) quite independent of the 
involved concept of source (the operation of state preparation P~ and its 
input s i ~  1~)), and (b) free of any probabilistic connotation. But a basis 
{]uj)} of common eigenvectors ]ui) of all the observables f~hx tied to the 
quantum measurement channel Cx and the corresponding set {Vxj} of 
factual outputs constitute together the quantum mechanical characteriza- 
tion of 4~x. 

�9 The formalism of quantum mechanics characterizes a "quantum mea- 
surement channel" Cx independently of any information source, and 
via the nonprobabilistic concept of a family {[uj)} of eigenvectors 
luj ), each one of which represents formally--by a function--a type 
of "signal" that remains invariant by passage through Cx and pro- 
duces a factual observable output sign Vxj. 

The descriptional strategy that generates the quantum mechanical transfor- 
mation law (2) is divide ut impera: In the formal language of orthodox 
quantum mechanics the umbilical cord between input sources and channels 
is neatly cut. The quantum measurement channels Cx are described "intrin- 
sically" and in a nonprobabilistic way by their invariant input signals ]uj), 
formally determined by the observables f~x via the equation f~hxluj)= 
OghxjlUj). The input probabilities fo ran  information system I(P~, Ca') from 
an information tree IT(P~,) simply are not defined [or are trivially defined 
as ~r(~b)= 1; see (6)]; they are skipped. The accent is put exclusively on the 
operational-observational obtaining of the output signs Va'j entailed by the 
invariant input signals of Ca., the eigenvectors luj) from the common basis 
of all the observables f~h x. The probabilities p(Vxi) of these output signs are 
calculated with the help of the association of (a) the principle of spectral 
decomposability 1~,) = ~ j  (uy 1~ )]uj ) of the mathematical representation 
of the unique input [~b > emitted by P~ and (b) the "predictional" probabil- 
ity postulate rr((~O, COhxj)= I<ujl >l =. This permits one to represent non- 
linear effects of interaction between any pair of two distinct input sources 
P ~ ,  P~,:~ that are both involved in an "interaction source" P,12 .... = 
G(P~, P~2,. �9 Pr notwithstanding the use of a fundamentally linear, 
vector-space representation for the input signals t~O ) emitted by the consid- 
ered input sources Pr and for the "eigeninput" signals [uj ) of a "quantum 
measurement channel" Cx. 

The descriptional strategy of information theory is very different. 
Within the informational language, the concept of an observable, with 
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eigenvectors and eigenvalues, is not defined (nor is a channel regarded as 
necessarily being a "measurement"). The successive phases of the process 
of "'transmission of information"--emission of an input signal Ai, passage 
through the channel C from the considered information system I(S/C), 
observation of an output signal Bk created out of Ai by the passage of 
Ai through C- -a re  all explicitly represented, according to a very intui- 
tive view. The representation of all the phases is probabilistic, and the  
umbilical cord between channel representation and the acting input source 
is not cut: 

�9 The formalism of information theory characterizes a channel by a 
matrix M( C / S) of which the elements mik = p( Bk / A i ) are conditional 
probabilities of  an output sign Bk, an input sign Ai from S being 
given, so in a way that is essentially dependent on the considered input 
source S, and essentially probabilistic. 

Such a representation is not adapted for expressing a transformation law. 
This is why there is no informational transformation theory. 

In such conditions it seems fit, in order to investigate on the possibil- 
ity, in principle, of an informational transformation law, and on its nature 
when compared with the quantum mechanical one, to utilize the quantum 
mechanical expression (2) as a close guide. 

So, to begin with, let us seek, inside information theory, a linear 
combination ~_~ tX~kp(Vyk ) of all the probabilitiesp(Vrk) where the coefficients 
0t~k are required as constants of which the values, as in the case of the quantum 
mechanical transformation coefficients ~jk = (Vk [Uj > = ~yk(Vxj, Vrg), some- 
how characterize the passages from a factual output Vxj possible by the use 
of the channel Cx, to a factual output Vrk possible when the channel Cy 
is at work: ~k = ~k(Vxj, Vyk). Now, with the assumed representation (7), 
(8), the only available pools of descriptional elements for building the sought 
numbers ~k(Vxj, Vrk) are either the conditional probabilitiesp(Vxj)/(2i, #rX) 
and P(Vrk)/(2i, #,r) from the channel matrixes (7) of Cx and Cr, or directly 
the expressions (8) of the output probabilities p(Vxj) and p(Vr~). The 
conditional probabilities p(Vxj)/(2i, #rX) and p(Vrk)/(2;, #s r) from (7) are all 
1 or 0, which is an obstacle in the way of a definition with their help of numbers 
~k(Vxj, Vrk) that shall characterize the pair of outputs Vxj, Vrk. So let us 
examine the expressions (8) of the probabilities p(Vxy) and p(Vrk). In these, 
though each probability p(~#~) or p(i#~r k) is also connected with a 
corresponding input sign 2t, nevertheless the factors ~rp(i#TxJ')6ir,j and 

i --,k ~sP(  # , r  )5~,,k do express channel features specifically tied to, respectively, 
Vxj and Vyk. By the use of these factors, however, we can only obtain numbers 
depending on output indexes j, k, and on an input index i. So let us indicate 
such numbers by the modified symbol "~k- 
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The most straightforward definition of a coefficient ~=~k as a number 
depending on (Vxj, Vr,)  is the ratio 

O~jk = P(#rx)  ,..j P( #.Y ) .,k (9) 
L r I ~  _1 

where P(~#Tx;) = p(/Z~x), p(i/z~ k) =p(p~ Y); ~r is posited not to be defined 
when (~,k is 0 for all the indexes s (i.e., i f  the involved 2~ does not contribute 
to the output V y k  , which is permitted by the assumed general conditions 
Csv, CIT, CQM). The ratio (9) can be regarded as an estimation of the 
"j-efficiency of the channel Cx'" relative to the "k-efficiency of the channel 
Cr"  and with respect to the input sign 2~. 

With the definition (9) and with (8) we can now form a linear combina- 
tion EkO~;kp(Vyk ) to be compared with the quantum mechanical one, 
Ek , ,  from (2). We obtain 

E tO~;kp(Vyk) = ~iP(~i) E P(]'LrX) ir,j p( ~,Lsy ) is,k ZP( ~sY )(~/s,k 
k " k s 

(10) 

Now, for k ~ k', in general 

i -~k 
P( #st  )6~,k, 

s s 

So in (10) each index k yields, by cancellation of the corresponding 
i -'~k ~ i "-'J ~sP(  #~r ) ~,k, its own term ~ r P ( # r X )  irj" Hence (10) contains each term 

E rl(i, - '~J~ th = r Yk P rX J irj ~., number of times n(i, Y) that the corresponding input sign 
2i contributes to some output Vrk from the alphabet { Vrk }: 

Ek ia;P(Vyk) = ~ p(2i) ,  n(i, Y) ~p( ~,lrX)~ir.j ( lO') 

[according to CQM, each 2i contributes to at least one output Vrk, which 
excludes n(i, Y) = 0, while the upper limit for n(i, Y) is set by the cardinal 
of { Vrk }]. But the sum 

E P(,~,i)[n(i, Y) ' "+j  E l ) (  ['IrX )~ir, j] 
i r 

from (I0') is different, in general, from the sum 

El)(;,) Z ' P (  ['LrX )~i , , :  
i r 

from the expression (8) ofp(Vxj) .  So, as in quantum mechanics, we have in 
general 

p(Vx:) ~ Z '=;kp(Vrk) (II) 
k 



86 Mugur-Schiichter 

The inequality (11) can be understood intuitively from the "predispo- 
sitional" properties of the input signs 2i: The possibilities CIT entail that, in 
general, the following relations hold for the predispositional input sets: 

{2;}-*rkc~{2i} ' rk ' r  for k # k '  (12) 

U (13) 
k 

(while the condition CQM only requires {2i }-~xJ = Uk [ {2~ } ~xj n {2~ }-~ rk]). 
According to (12), each input signal 2~ can be involved in several distinct 
predispositional events {27rk}, corresponding to different indexes k; the 
predispositional events {27 rk} interfere in general. Furthermore, according 
to (13), the union Uk {2i }-~ rk of all the Y-predispositional sets {2~ } ~ vk might 
not exhaust the Xj-predispositional set {2,-} "~xj, or might exceed it. So, if in 
the expression of the probability p(Vxj) ( j  fixed) sought as a function of all 
the p(Vyk) we begin by writing down the linear combination ~k ~a~kp(Vrk) 
which, with the choice (9), for any given 2;, generates a term 
p(Ai)E,p(ilt~xJ)fir.j for each Yk separately, and then add all these terms, the 
possible interferences expressed by (12) and the possible inequality (13) are 
not taken into account according to the law of total probabilities. Therefore 
in general we shall afterward have to add--algebraically--other terms in 
order to compensate for the effect on the probabilities of the "interferences" 
(12) and the nonequality (7). 

So, with the choice (9) for the coefficients ~a'kj(Vxj, Vrk), we finally obtain 
for the transformation law an informational expression of the form 

p( Vxj) = ~ ia~kp( Vrk ) + [other terms] (2") 
k 

Obviously (2') is of the same general type as the quantum mechanical 
transformation law (2). This is a formal similitude which, across the deep 
differences between the quantum mechanical and the informational strategies 
for representing a quantum measurement channel, stems directly from the 
semantic identity between the quantum mechanical and the informational 
concepts of probability. Indeed, the informational relation (2') appears 
explicitly as a consequence of the fact that the output signs Vrk are assumed 
to be factually created out of the input signals by passage of these through 
the "measurement channel" at work, which entails for the input signs 2i an 
only "predispositional" role. 

But, as announced, in the informational expression (2') [other terms] 
is not effectively computable, while in the quantum mechanical expression (2) 
["interference" terms] is computable. This draws attention to the specific 
capacities of the quantum mechanical system of representation of informa- 
tion. From the standpoint of information theory, the quantum mechanical 
representation amounts to just a formal scenario according to which each one 
realization of an operation of state preparation P~, is regarded as producing 
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the whole alphabet of input pairs {([uj), Vxj)} distributed with probability 
density p(tuj), Vxj) =p(Vxj) = [(ujl~b)[ 2 (Wigner, 1963), out of which only 
one output V~ 7, e { Vxj} is somehow selected during an output-registration 
("reduction"), with an output probability density p(Vxj)= l<ujl ,>I = that 
conserves the input distribution: the real physical succession commanded by 
the spacetime structure of the involved probability tree is violated, and the 
individual and statistical level of description are skipped, only the probabilis- 
tic level being expressed. On the other hand, this entails computability. But 
nothing hinders to supplement this formal scenario, by a representation (8), 
thereby restoring the physical succession as well as a full expression of all 
the involved descriptionat levels. 

The considerations of this section yield a new insight into the quantum 
mechanical transformation theory. 

�9 The relations (9)-(13) and (2")permit us to form an intuitive notion 
concerning tile physical characteristics of the processes that can lead 
to the quantum mechanical transformation theory; they yield a model 
for these. 

I have remarked before that the assumption of actualization of only one 
ontological property l~xj of  the studied entity, but one that produces 
simultaneously all the different considered qualifications ~o~ X tied to Mx, leads 
to the same format effect (5) as the more restrictive Kolmogorov assumption 
of ontological preexistence of such properties. Therefore, as long as we stay 
inside only one branch of the information tree IT(P~) corresponding to the 
quantum mechanical probability tree T(Pr), Kolmogorov-type transforma- 
tion relations are applicable inside quantum mechanics, though in this 
particular case also the outputs are factually created by the involved random 
phenomenon. In this rather superficial sense--and only in this--the Kol- 
mogorov concept of probability can be regarded as simply a particular 
:instance of a "more general" concept of probability involved in quantum 
mechanics and in the theory of information. But I mention and emphasize 
that it is reducing to try to express the relation between these two concepts 
of probability exclusively in terms of formal particularizations inside a more 
general formal representation: I have shown (Mugur-Schgchter, 1993, pp. 
94-95) that, in the order of increasingly complex conceptual elaborations, 
the quantum mechanical concept of probability is prior to Kolmogorov's 
concept, it is the basic concept of probability that emerges first and out of 
which the probabilities in Kolmogorov's sense are built by metaconceptual- 
ization, as a metaconcept. 

4.5. Concluding Remarks 

I summarize the results. The representations (7), (8), and (9), (11), (2') 
enrich both quantum mechanics and the information theory: 
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1. The two-level extension (7), (8) establishes a well-structured informa- 
tional framework for the elaboration of the measurement theory of any 
attempt at a deterministic intrinsic interpretation of the quantum mechanical 
formalism. 

2. The information theory is now endowed with the possibility of 
distinction between the microscopic and the macroscopic levels of description, 
and with explicit questions and formulations concerning an informational 
transformation theory. 

3. The quantum mechanical transformation theory ceases to be mere 
posited blind algorithms, it acquires a model, and factual significances can 
be associated with it. 

4. The quantum mechanical algorithms, in spite of their profound 
specificities, become in principle comparable with those of the informational 
representations. 

5. OUTLOOK 

In previous work (Mugur-Sch/ichter, 1992c, 1993) I have shown that the 
quantum mechanical formalism has captured in it certain universal and very 
basic structures of conceptualization. Guided by the recognition of this fact, 
I have developed a "general syntax of relativized conceptualization" where 
the mists of false problems and paradoxes emanating from implicit false 
absolutes are cleaned away from the descriptions. The whole unending 
multiplicity of possible descriptional viewpoints is explicitly taken into 
account, and it generates a corresponding coherent and hierarchical unending 
multiplicity of relativized descriptions, each of which is crystal clear, and is 
connected to the others in a crystal clear way. Inside this general syntax of 
relativized conceptualization, I have identified the relativized form of the most 
basic sort of probabilistic conceptualization. And I have shown that quantum 
probabilities are a particular instance of  this form, whereas Kolmogorov 
probabilities are the result of a subsequent probabilistic conceptualization, 
founded--implicitly--on the basic one. 

In other works (Mugur-Sch/ichter, 1980, 1992c, Mugur-Sch/ichter and 
Hadjisavvas, 1982), I have derived the concept of informational entropy, 
whereas Shannon just posited it. The derivation involves a new functional, 
"the functional of opacity of a statistics with respect to the acting probability 
law," that defines mathematically the connection between a probability 
measure, its informational entropy, and all the statistics possible on the 
involved universe of elementary events. The opacity functional integrates the 
weak law of big numbers into a far more complex concept of converging 
evolution. And-- / f i t  is relativized--it endows the acting probability law and 
its informational entropy with a remakable significance, namely that of an 
"attractor" of all the various statistics that are possible on the involved 
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universe of elementary events, toward a family of "relative metaforms" 
encoded in the acting probability law and mathematically represented (in a 
global, mean sense)by the informational entropy of  this law (Mugur-Sch~ichter, 
1993). In this way, probabilities and information are deeply unified inside 
the general syntax of relativized conceptualization. 

Consider now the results of this work. 
From a mathematical point of view, the formalism of the quantum theory 

is far more powerful and precise than that of the information theory. Its 
computational capacities are outstanding. On the other hand, the theory of 
information is intuitive, and it has a quite remarkable generality: it applies 
to :very conceivable change, regarded as a process by which an initial input 
signal (perturbation, process, etc.) produces an output sign (effect of any 
nature), by some interaction regarded as an information channel. In 
particular, it is possible to represent, in informational language, networks 
of closed chains of information systems where the last outputs are injected 
into the initial input source, entailing "self-organization." Now, the analyses 
from the last section of this work suggest the possibility of a symbiosis. The 
specific performances of  the quantum mechanical bra-ket formalism might come 
out to be transferable to the informational approach. The messages emitted 
by information sources, represented by mere strings of symbols instead of 
functions, might come out to always admit of a representation as "message- 
vectors" forming a vector space. Correlatively, any channel might come out 
to admit, like the quantum measurement channels, of a nonprobabilistic 
representation, by somehow specifying for it a family of "message-eigenvec- 
tors" ("eigenstrings" of symbols) which characterize the channel indepen- 
dently of any specificity of this or that input source, and which stay invariant 
by passage through that channel. Such a representation could then be split 
by convenient particularizations, so as to distinguish between "dead" 
channels and "living" channels (Varela, 1989). The definition of the output 
and (in contradistinction to quantum mechanics) also the input probabilities, 
would have to be achieved via (a) a well-formulated principle of superposition 
of the effects (messages) of interacting information sources, (b) a principle 
of spectral decomposability of any message-vector, on the basis of eigenmes- 
sages introduced by any channel, and (c) for any given class of input sources 
and channels of a definite nature, specifically convenient algorithms for 
calculating the output and input probability laws in such a way that these 
laws, when estimated for any given interaction source, shall be correctly 
related to the separate laws estimated for the sources that interact inside that 
interaction source. In short, the informational algorithms might come out 
to accept reformulation in terms of a very general sort of "informational 
bra-ket algebra," yielding back the quantum formalism as only a particular 
realization (in which all the message-vectors and message-eigenvectors are 
represented by functions determined with the help of linear differential 
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operators  and equations,  and the input  probabil i ty laws are skipped). In  
order  to exclude descriptional knots  and mists tied to nonreferred,  absolute 
formulat ions,  the whole approach  would have to be at tempted inside the 
general syntax o f  relativized conceptualization.  

So, on  a still far horizon,  I perceive the first contours  o f  a general and 
radically relativized mathemat ical  representat ion o f  the emergence and 
transmission o f  " fo rms ,"  o f  pat terns  of  any kind: patterns o f  inorganic or  
o f  organic mat ter  relating a parcel o f  physical reality to another  one, or  
relating mat ter  to mind or  mind to matter,  or  mind to mind; or  relating 
pat terns o f  behavior  to : . . ,  etc. 
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